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We present a new energy-minimization framework for the graph isomor-
phism problem that is based on an equivalent maximum clique formu-
lation. The approach is centered around a fundamental result proved by
Motzkin and Straus in the mid-1960s, and recently expanded in various
ways, which allows us to formulate the maximum clique problem in terms
of a standard quadratic program. The attractive feature of this formulation
is that a clear one-to-one correspondence exists between the solutions of
the quadratic program and those in the original, combinatorial problem.
To solve the program we use the so-called replicator equations—a class
of straightforward continuous- and discrete-time dynamical systems de-
veloped in various branches of theoretical biology. We show how, despite
their inherent inability to escape from local solutions, they nevertheless
provide experimental results that are competitive with those obtained
using more elaborate mean-�eld annealing heuristics.

1 Introduction

The graph isomorphism problem is one of those few combinatorial opti-
mization problems that still resist any computational complexity character-
ization (Garey & Johnson, 1979; Johnson, 1988). Despite decades of active
research, no polynomial-time algorithm for it has yet been found. At the
same time, while clearly belonging to NP, no proof has been provided that
it is NP-complete. Indeed, there is strong evidence that this cannot be the
case, for otherwise the polynomial hierarchy would collapse(Boppana, Has-
tad, & Zachos, 1987; Schöning, 1988). The current belief is that the problem
lies strictly between the P and NP-complete classes.

Because of its theoretical and practical importance, the problem has at-
tracted much attention in the neural network community, and various pow-
erful heuristics have been developed (Kree & Zippelius, 1988; Gold & Ran-
garajan, 1996;Mjolsness, Gindi,& Anandan, 1989;Rangarajan, Gold,& Mjol-
sness, 1996; Rangarajan & Mjolsness, 1996; Simi Âc, 1991). Following Hop�eld
and Tank’s (1985) seminal work, the customary approach has been to derive
a (continuous) energy function in such a way that solutions of the original,
discrete problem map onto minimizers of the function in a continuous do-
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main. For graph isomorphism, the continuous domain usually corresponds
to the unit hypercube, and the energy function is quadratic. The energy is
then minimized using an appropriate dynamical system and, after conver-
gence, a solution to the discrete problem is recovered from the minimizer
thus found. Almost invariably, the minimization algorithms developed so
far incorporate techniques borrowed from statistical mechanics, in particu-
lar, mean �eld theory, which allow one to escape from poor local solutions.

Early formulations suffer from the lack of a precise characterization of
the local and global minimizers of the continuous energy function in terms
of the solutions of the discrete problem, which are usually in the form of
a permutation matrix. In other words, while the solutions of the original
problem correspond (by construction) to solutions of its continuous coun-
terpart, the inverse is not necessarily true. Recently, however, Yuille and
Kosowsky (1994) showed that by adding a certain term to the quadratic
objective, minimizers in the unit hypercube can lie only at the vertices,
thereby overcoming this drawback. Their formulation has been success-
fully employed in conjunction with double normalization and Lagrangian
decomposition methods (Rangarajan et al., 1996; Rangarajan & Mjolsness,
1996). An additional remark on standard neural network models for graph
isomorphism is that it is not clear how to interpret the solutions of the con-
tinuous problem when the graphs being matched are not isomorphic. In
this case, in fact, there is no permutation matrix that solves the problem,
and yet there will be minima in continuous space since the domain is com-
pact and the function being minimized is continuous. Although this issue
is more closely related to the subgraph isomorphism problem (which is
known to be computationally intractable), it would be desirable for a graph
isomorphism algorithm always to return “meaningful” solutions.

In this article we develop a new energy-minimization framework for
graph isomorphism based on the idea of reducing it to the maximum clique
problem,another well-known combinatorial optimizationproblem (Bomze,
Budinich, Pardalos, & Pelillo, 1999). Central to our approach is a powerful
result originallyprovedby Motzkin and Straus (1965) and recently extended
in various ways (Bomze, 1997; Gibbons, Hearn, & Pardalos, 1996; Gibbons,
Hearn, Pardalos, & Ramana, 1997; Pelillo & Jagota, 1995), which allows us to
formulate the maximum clique problem in terms of an inde�nite quadratic
program. In the proposed formulation, an elegant one-to-one correspon-
dence exists between the solutions of the quadratic program and those of
the original problem. We also present a class of straightforward continuous-
and discrete-time dynamical systems, known in mathematical biology as
replicator equations, and show how, owing to their properties, they provide
a natural and useful heuristic for solving the Motzkin-Straus program, and
hence the graph isomorphism problem.

It may be argued that trying to solve the graph isomorphism problem by
reducing it to the maximum clique problem is an altogether inappropriate
choice. In contrast to graph isomorphism, in fact, the problem of �nding
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just the cardinality of the maximum clique in a graph is known to be NP-
complete and, according to recent theoretical results, so is the problem of
approximating it within a certain tolerance (Arora, Lund, Motwani, Su-
dan, & Szegedy, 1992; Bellare, Goldwasser, & Sudan, 1995; Hastad, 1996).1

The experimental results presented in this article, however, seem to con-
tradict this claim. By using simple relaxation equations that are inherently
unable to avoid local optima, we get results that compare favorably with
those obtained using state-of-the-art sophisticated deterministic annealing
algorithms that, by contrast, are explicitly designed to escape from local
solutions. This suggests that the proposed Motzkin-Straus formulation is
a promising framework within which to develop powerful graph isomor-
phism heuristics.

The outline of the article is as follows. Section 2 presents the quadratic
programming formulation for graph isomorphism derived from the
Motzkin-Straus theorem. In section 3 we introduce the replicator equations,
discuss their fundamental dynamical properties, and present the experi-
mental results obtained over hundreds of 100-vertex graphs of various con-
nectivities. In section 4, an exponential replicator dynamics is presented
that turns out to be dramatically faster and more accurate than the classical
model. Finally, section 5 concludes the article.

2 A Quadratic Programming Formulation for Graph Isomorphism

2.1 Graph Isomorphism as Clique Search. Let G D (V, E) be an undi-
rected graph, where V is the set of vertices and E µV £V is the set of edges.
The order of G is the number of its vertices, and its size is the number of
edges. Two vertices i, j 2 V are said to be adjacent if (i, j) 2 E. The adjacency
matrix of G is the n £ n symmetric matrix A D (aij) de�ned as follows:

aij D
»

1, if (i, j) 2 E,
0, otherwise.

The degree of a vertex i 2 V, denoted by deg(i), is the number of vertices
adjacent to it, that is, deg(i) D

P
j aij.

Given two graphs G0 D (V0 , E0 ) and G00 D (V00 , E00 ), an isomorphism be-
tween them is any bijection w : V0 ! V00 such that (i, j) 2 E0 , (w (i), w (j)) 2
E00 , for all i, j 2 V0 . Two graphs are said to be isomorphic if there exists an
isomorphism between them. The graph isomorphism problem is therefore
to decide whether two graphs are isomorphic and, in the af�rmative, to
�nd an isomorphism. The maximum common subgraph problem is more
general and dif�cult (Garey & Johnson, 1979), and includes the graph iso-

1 However, these are worst-case results, and there are certain classes of graphs for
which the problem is solvable in polynomial time (Grötschel, Lov Âasz, & Schrijver, 1988;
Bomze et al., 1999).
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morphism problem as a special case. It consists of �nding the largest iso-
morphic subgraphs of G0 and G00 . A simpler version of this problem is to
�nd a maximal common subgraph—an isomorphism between subgraphs
that is not included in any larger subgraph isomorphism.

Barrow and Burstall (1976) and also Kozen (1978) introduced the notion
of an association graph as a useful auxiliary graph structure for solving
general graph/subgraph isomorphism problems.

De�nition 1. The association graph derived from graphs G0 D (V0 , E0 ) and
G00 D (V00 , E00 ) is the undirected graph G D (V, E) de�ned as follows:

V D V0 £ V00

and

E D
©
((i, h), (j, k)) 2 V £ V: i 6D j, h 6D k, and (i, j) 2 E0 , (h, k) 2 E00ª .

Given an arbitrary undirected graph G D (V, E), a subset of vertices C is
called a clique if all its vertices are mutually adjacent; that is, for all i, j 2 C
we have (i, j) 2 E. A clique is said to be maximal if it is not contained in any
larger clique and maximum if it is the largest clique in the graph. The clique
number, denoted by v(G), is de�ned as the cardinality of the maximum
clique.

The following result establishes an equivalence between the graph iso-
morphism problem and the maximum clique problem.

Theorem 1. Let G0 D (V0 , E0 ) and G00 D (V00 , E00 ) be two graphs of order n, and
let G be the corresponding association graph. Then G0 and G00 are isomorphic if and
only if v(G) D n. In this case, any maximum clique of G induces an isomorphism
between G0 and G00 , and vice versa. In general, maximal and maximum cliques in G
are in one-to-one correspondence with maximal and maximum common subgraph
isomorphisms between G0 and G00 , respectively.

Proof. Suppose that the two graphs are isomorphic, and let w be an iso-
morphism between them. Then the subset of vertices of G de�ned as Cw D
f(i, w (i)): 8i 2 V0g is clearly a maximum clique of cardinality n. Conversely,
let C be an n-vertex maximum clique of G, and for each (i, h) 2 C de�ne
w (i) D h. Then, because of the way the association graph is constructed, it is
clear that w is an isomorphism between G0 and G00 . The proof for the general
case is analogous.

2.2 Continuous Formulation of the Maximum Clique Problem. Let
G D (V, E) be an arbitrary undirected graph of order n, and let Sn denote
the standard simplex of Rn:

Sn D

(
x 2 Rn: xi ¸ 0 for all i D 1, . . . , n, and

nX

iD1

xi D 1

)
.
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Given a subset of vertices C of G we shall denote by xc its characteristic
vector, which is the point in Sn de�ned as

xc
i D

»
1 / |C|, if i 2 C
0, otherwise

where |C| denotes the cardinality of C.
Now, consider the following quadratic function,

f (x) D xTAx

D
nX

iD1

nX

jD1

aijxixj, (2.1)

where A D (aij) is the adjacency matrix of G, and T denotes transposition.
A point x¤ 2 Sn is said to be a global maximizer of f in Sn if f (x¤) ¸ f (x),
for all x 2 Sn. It is said to be a local maximizer if there exists an e > 0 such
that f (x¤) ¸ f (x) for all x 2 Sn whose distance from x¤ is less than e, and if
f (x¤) D f (x) implies x¤ D x, then x¤ is said to be a strict local maximizer.

The Motzkin-Straus theorem (Motzkin & Straus, 1965) establishes a re-
markable connection between global (local) maximizers of the function f in
Sn and maximum (maximal) cliques of G. Speci�cally, it states that a subset
of vertices C of a graph G is a maximum clique if and only if its character-
istic vector xc is a global maximizer of f on Sn. A similar relationship holds
between (strict) local maximizers and maximal cliques (Gibbons et al., 1997;
Pelillo & Jagota, 1995). This result has an intriguing computational signi�-
cance in that it allows us to shift from the discrete to the continuous domain
in an elegant manner. Such a reformulation is attractive for several reasons.
It not only allows us to exploit the full arsenal of continuous optimization
techniques, thereby leading to the development of new algorithms, but may
also reveal unexpected theoretical properties. Additionally, continuous op-
timization methods are often described in terms of (ordinary) differential
equations and are therefore potentially implementable in analog circuitry.
The Motzkin-Straus theorem has served as the basis of many clique-�nding
procedures (Bomze, Pelillo, & Giacomini, 1997; Bomze, Budinich, Pelillo, &
Rossi, 1999; Gibbons et al., 1996; Pardalos & Phillips, 1990; Pelillo, 1995),
and has also been used to determine theoretical bounds on the clique num-
ber (Pardalos & Phillips, 1990; Wilf, 1986).

One drawback associated with the original Motzkin-Straus formulation
relates to the existence of spurious solutions—maximizers of f that are not in
the form of characteristic vectors. This was observed empirically by Parda-
los and Phillips (1990) and has more recently been formalized by Pelillo and
Jagota (1995). In principle,spurious solutions represent a problem;although
they provide information about the cardinality of the maximum clique, they
do not allow us to extract its vertices easily. Fortunately, there is straight-
forward solution to this problem which has recently been introduced and
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studied by Bomze (1997). Consider the following regularized version of
function f ,

Of (x) D
nX

iD1

nX

jD1

aijxixj C
1
2

nX

iD1

x2
i (2.3)

which is obtained from equation 2.1 by substituting the adjacency matrix A
of G with

OA D A C
1
2

In,

where In is the n £ n identity matrix. The following is the spurious-free
counterpart of the original Motzkin-Straus theorem (see Bomze, 1997, for
proof).

Theorem 2. Let C be a subset of vertices of a graph G, and let xc be its charac-
teristic vector. Then the following statements hold:

1. C is a maximum clique of G if and only if xc is a global maximizer of the
function Of over the simplex Sn. In this case, v(G) D 1 /2(1 ¡ f̂ (xc)).

2. C is a maximal clique of G if and only if xc is a local maximizer of Of in Sn.

3. All local (and hence global) maximizers of Of over Sn are strict.

Unlike the Motzkin-Straus formulation, the previous result guarantees
that all maximizers of Of on Sn are strict, and are characteristic vectors of
maximal or maximum cliques in the graph. In an exact sense, therefore, a
one-to-one correspondence exists between maximal cliques and local max-
imizers of Of in Sn, on the one hand, and maximum cliques and global max-
imizers, on the other hand. This solves the spurious solution problem in a
de�nitive manner.

2.3 A Quadratic Program for Graph Isomorphism. In the light of the
above discussion, it is now a straightforward exercise to formulate the graph
isomorphism problem in terms of a standard quadratic programming prob-
lem. Let G0 and G00 be two arbitrary graphs of order n, and let A denote the
adjacency matrix of the corresponding association graph, whose order is
N D n2. The graph isomorphism problem is equivalent to the following
program:

maximize Of (x) D xT (A C 1
2 IN)x

subject to x 2 SN .
(2.3)

More precisely, the following result holds, which is a straightforward con-
sequence of theorems 1 and 2.
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Theorem 3. Let G0 D (V0, E0 ) and G00 D (V00 , E00 ) be two graphs of order n,
and let x¤ be a global solution of program 2.3, where A is the adjacency matrix of
the association graph of G0 and G00 . Then G0 and G00 are isomorphic if and only if
Of (x¤) D 1 ¡ 1 /2n. In this case, any global solution to 2.3 induces an isomorphism

between G0 and G00 , and vice versa. In general, local and global solutions to 2.3
are in one-to-one correspondence with maximal and maximum common subgraph
isomorphisms between G0 and G00 , respectively.

Note that the adjacency matrix A D (aih, jk) of the association graph can
be explicitly written as follows:

aih, jk D
»

1 ¡ (a0
ij ¡ a00

hk)
2, if i 6D j and h 6D k

0, otherwise,

where A0 D (a0
ij) and A00 D (a00

hk) are the adjacency matrices of G0 and G00 ,

respectively. The regularized Motzkin-Straus objective function Of therefore
becomes:

Of (x) D
X

i,h

X

j 6Di

X

k 6Dh

a0
ija

00
hkxihxjk

C
X

i,h

X

j 6Di

X

k 6Dh

(1 ¡ a0
ij)(1 ¡ a00

hk)xihxjk C
1
2

X

i,h

x2
ih . (2.4)

Many interesting observations about the previous objective function can
be made. It consists of three terms. The �rst is identical to the one used
in Mjolsness et al. (1989), Gold and Rangarajan (1996), Rangarajan et al.
(1996), and Rangarajan and Mjolsness (1996), which derives from the so-
called rectangle rule. Intuitively, by restricting ourselves to binary variables
xih 2 f0, 1g, it simply counts the number of consistent “rectangles” between
G0 and G00 that are induced by the tentative solution x. The second term
is new and, by analogy with the rectangle rule, can be derived from what
can be called the antirectangle rule: in case of binary variables, it counts
the number of rectangles between the complements of the original graphs.2

Finally, the third term in equation 2.4, which has been added to avoid spu-
rious solutions in the Motzkin-Straus program, is just the self-ampli�cation
term introduced in a different context by Yuille and Kosowsky (1994) for
the related purpose of ensuring that the minimizers of a generic quadratic
function in the unit hypercube lie at the vertices. The self-ampli�cation term
has also been employed recently in Rangarajan et al. (1996) and Rangarajan
and Mjolsness (1996). Like ours, the self-ampli�cation term has the form
c

P
i,h x2

ih, but the parameter c depends on the structure of the quadratic

2 The complement of a graph G D (V, E) is the graph G D (V, E) such that (i, j) 2 E ,
(i, j) /2 E.
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program matrix. In our case c D 1
2 , and it can easily be proved that theo-

rem 2 holds true for all c 2 (0, 1). Its choice is therefore independent of the
structure of the matrix A, and only affects the basins of attraction around
local optima.3

3 Replicator Equations and Graph Isomorphism

3.1 The Model and Its Properties. Replicator equations have been de-
veloped and studied in the context of evolutionary game theory, a discipline
pioneered by J. Maynard Smith (1982) that aims to model the evolution of
animal behavior using the principlesand tools of game theory. In this section
we discuss the basic intuition behind replicator equations and present a few
theoretical properties that will be instrumental in the subsequent develop-
ment of our graph isomorphism algorithm. For a more systematic treatment
see Hofbauer and Sigmund (1988) and Weibull (1995).

Consider a large population of individuals belonging to the same species
that compete for a particular limited resource, such as food or territory. This
kind of con�ict is modeled as a game, the players being pairs of randomly
selected population members. In contrast to traditional application �elds of
game theory, such as economics or sociology (Luce & Raiffa, 1957), players
here do not behave rationally but act instead according to a preprogrammed
behavior pattern, or pure strategy. Reproduction is assumed to be asexual,
which means that, apart from mutation, offspring will inherit the same
genetic material, and hence behavioral phenotype, as their parents. Let J D
f1, . . . , ng be the set of pure strategies and, for all i 2 J, let xi(t) be the relative
frequency of population members playing strategy i, at time t. The state of
the system at time t is simply the vector x(t) D (x1(t), . . . , xn(t))T.

One advantage of applying game theory to biology is that the notion
of utility is much simpler and clearer than in human contexts. Here, a
player ’s utility can be measured in terms of Darwinian �tness or repro-
ductive success—the player ’s expected number of offspring. Let W D (wij)
be the n £n payoff (or �tness) matrix. Speci�cally, for each pair of strategies
i, j 2 J, wij represents the payoff of an individual playing strategy i against
an opponent playing strategy j. Without loss of generality, we shall assume
that the payoff matrix is nonnegative, that is, wij ¸ 0 for all i, j 2 J. At time
t, the average payoff of strategy i is given by

p i(t) D
nX

jD1

wijxj(t),

while the mean payoff over the entire population is
Pn

iD1 xi (t)p i(t).

3 The effects of allowing c to take on negative values and of varying it during the
optimization process are studied in Bomze, Budinich, Pelillo, and Rossi (1999).
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In evolutionary game theory, the assumption is made that the game is
played over and over, generation after generation, and that the action of nat-
ural selection will result in the evolution of the �ttest strategies. If successive
generations blend into each other, the evolution of behavioral phenotypes
can be described by the following set of differential equations (Taylor &
Jonker, 1978):

Pxi (t) D xi(t)

0

@p i(t) ¡
nX

jD1

xj(t)pj(t)

1

A , i D 1, . . . , n (3.1)

where a dot signi�es derivative with respect to time. The basic idea behind
this model is that the average rate of increase Pxi(t) /xi(t) equals the difference
between the average �tness of strategy i and the mean �tness over the entire
population. It is straightforward to show that the simplex Sn is invariant
under equation 3.1 or, in other words, any trajectory starting in Sn will
remain in Sn. To see this, simply note that d

dt
P

i xi(t) D
P

i Pxi(t) D 0, which
means that the interior of Sn (the set de�ned by xi > 0, for all i D 1, . . . , n)
is invariant. The additional observation that the boundary too is invariant
completes the proof.

Similar arguments provide a rationale for the following discrete-time
version of the replicator dynamics, assuming nonoverlapping generations:

xi (t C 1) D
xi(t)p i(t)Pn
jD1 xj(t)pj (t)

, i D 1, . . . , n. (3.2)

Because of the nonnegativity of the �tness matrix W and the normalization
factor, this system too makes the simplex Sn invariant as its continuous
counterpart.

A point x D x(t) is said to be a stationary (or equilibrium) point for our
dynamical systems if Pxi(t) D 0 in the continuous-time case and xi (t C 1) D
xi(t) in the discrete-time case (i D 1, . . . , n). Moreover, a stationary point is
said to be asymptotically stable if any trajectory starting in its vicinity will
converge to it as t ! 1. It turns out that both the continuous-time and
discrete-time replicator dynamics have the same set of stationary points,
that is, all the points in Sn satisfying the condition:

xi (t)

0

@p i(t) ¡
nX

jD1

xj(t)p j(t)

1

A D 0, i D 1, . . . , n (3.3)

or, equivalently, p i(t) D
Pn

jD1 xj(t)p j(t) whenever xi > 0.
Equations 3.1 and 3.2 arise independently in different branches of theo-

retical biology (Hofbauer & Sigmund, 1988). In population ecology, for ex-
ample, the famous Lotka-Volterra equations for predator-prey systems turn
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out to be equivalent to the continuous-time dynamics (see equation 3.1),
under a simple barycentric transformation and a change in velocity. In pop-
ulation genetics they are known as selection equations (Crow & Kimura,
1970). In this case, each xi represents the frequency of the ith allele Ai and
the payoff wij is the “�tness” of genotype AiAj. Here the �tness matrix W
is always symmetric. The discrete-time dynamical equations turn out to
be a special case of a general class of dynamical systems introduced by
Baum and Eagon (1967) and studied by Baum and Sell (1968) in the context
of Markov chain theory. They also represent an instance of the so-called
relaxation labeling processes, a class of parallel, distributed algorithms de-
veloped in computer vision to solve (continuous) constraint satisfaction
problems (Rosenfeld, Hummel, & Zucker, 1976; Hummel & Zucker, 1983).
An independent connection between dynamical systems such as relaxation
labeling and Hop�eld-style networks and game theory has recently been
described by Miller and Zucker (1991, 1992).

We are now interested in studying the dynamical properties of replicator
systems; it is these properties that will allow us to employ them for solving
the graph isomorphism problem. The following theorem states that under
replicator dynamics, the population’s average �tness always increases, pro-
vided that the payoff matrix is symmetric (in game theory terminology, this
situation is referred to as a doubly symmetric game).

Theorem 4. Suppose that the (nonnegative) payoff matrix W is symmetric (i.e.,
wij D wji for all i, j D 1, . . . , n). The quadratic polynomial F de�ned as

F(x) D
nX

iD1

nX

jD1

wijxixj (3.4)

is strictly increasing along any nonconstant trajectory of both continuous-time
(see equation 3.1) and discrete-time (see equation 3.2) replicator equations. In other
words, for all t ¸ 0 we have

d
dt

F(x(t)) > 0

for system 3.1, and

F(x(t C 1)) > F(x(t))

for system 3.2, unless x(t) is a stationary point. Furthermore, any such trajectory
converges to a (unique) stationary point.

The previous result isknown in mathematical biology as the fundamental
theorem of natural selection (Crow & Kimura, 1970; Hofbauer & Sigmund,
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1988; Weibull, 1995) and, in its original form, traces back to Fisher (1930). As
far as the discrete-time model is concerned, it can be regarded as a straight-
forward implication of the Baum-Eagon theorem (Baum & Eagon, 1967;
Baum & Sell, 1968), which is valid for general polynomial functions over
product of simplices. Waugh and Westervelt (1993) also proved a similar re-
sult for a related class of continuous- and discrete-time dynamical systems.
In the discrete-time case, however, they put bounds on the eigenvalues of
W in order to achieve convergence to �xed points.

The fact that all trajectories of the replicator dynamics converge to a sta-
tionary point has been proved more recently (Losert & Akin, 1983; Lyubich,
Maistrowskii, & Ol’khovskii, 1980). However, in general, not all stationary
points are local maximizers of F on Sn. The vertices of Sn, for example, are
all stationary points for equations 3.1 and 3.2, whatever the landscape of F.
Moreover, there may exist trajectories that, starting from the interior of Sn,
eventually approach a saddle point of F. However, a result recently proved
by Bomze (1997) asserts that all asymptotically stable stationary points of
replicator dynamics correspond to (strict) local maximizers of Of on Sn, and
vice versa.

3.2 Application to Graph Isomorphism Problems. The properties dis-
cussed in the preceding subsection naturally suggest using replicator equa-
tions as a useful heuristic for the graph isomorphism problem. Let G0 D
(V0, E0 ) and G00 D (V00, E00 ) be two graphs of order n, and let A denote the
adjacency matrix of the corresponding N-vertex association graph G. By
letting

W D A C
1
2

IN ,

we know that the replicator dynamical systems, starting from an arbitrary
initial state, will iteratively maximize the function Of (x) D xT (A C 1

2 IN)x in
SN and eventually converge to a strict local maximizer that, by virtue of
theorem 2, will then correspond to the characteristic vector of a maximal
clique in the association graph.4 We know from theorem 3 that this will
in turn induce an isomorphism between two subgraphs of G0 and G00 that
is maximal, in the sense that there is no other isomorphism between sub-
graphs of G0 and G00 that includes the one found. Clearly, in theory there is no
guarantee that the converged solution will be a global maximizer of Of and
therefore that it will induce a maximum isomorphism between the two orig-
inal graphs. However, previous experimental work done on the maximum
clique problem (Bomze, Pelillo, & Giacomini, 1997; Pelillo, 1995), and also

4 Because of the presence of saddle points, the algorithm occasionally may converge
toward one such points. However, since the set of saddle points is of measure zero, this
happens with probability tending to zero.
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the results presented in this article, suggest that the basins of attraction of
global maximizers are quite large, and frequently the algorithm converges
to one of them. Without any heuristic information about the optimal solu-
tion, it is customary to start out the replicator process from the barycenter
of the simplex—that is, the vector ( 1

N , . . . , 1
N )T. This choice ensures that no

particular solution is favored.
The emergent matching strategy of our replicator model is identical to

the one adopted by Simi Âc’s algorithm (Simi Âc, 1991), which is speculated
to be similar to that employed by humans in solving matching problems.
Speci�cally, it seems that the algorithm �rst tries to match what Simi Âc called
the notable vertices—that is, those vertices having highest or lowest con-
nectivity. To illustrate, consider two vertices i 2 V0 and h 2 V00 , and assume
for simplicity that they have the same degree, deg(i) D deg(h). It is easy to
show that the corresponding vertex in the association graph has at most de-
gree deg(i, h) D

¡deg(i)
2

¢
C

¡n¡1¡deg(i)
2

¢
D deg2(i) ¡ (n¡1) deg(i) C

¡n¡1
2

¢
, which

attains its minimum value when deg(i) D n¡1
2 and maximum value when

deg(i) equals 0 or n ¡ 1. It follows that pairs of notable vertices give rise to
vertices in the association graph having the largest degree. Now consider
what happens at the very �rst iterations of our clique-�nding relaxation
process, assuming, as is customary, that it is started from the barycenter of
SN. At t D 0, the average payoff of a vertex (i, h) in the association graph
is p ih(0) D 1

N
P

jk aih, jk C 1
2N D 1

2N (2 deg(i, h) C 1). Because of the payoff
monotonicity property of replicator dynamics (cf. equations 4.2 and 4.4 in
the next section) this implies that at the very beginning of the relaxation pro-
cess, the components corresponding to pairs of notable vertices will grow
at a higher rate, thereby imposing a sort of partial ordering over the set of
possible assignments. Clearly this simpli�ed picture is no longer valid after
the �rst few iterations, when local information begins to propagate.

We illustrate this behavior with the aid of a simple example. Consider the
two isomorphic graphs in Figure 1. Our matching strategy would suggest
�rst matching vertex 1 to vertex A, then 2 to B, and �nally either 3 to C
and 4 to D, or 3 to D and 4 to C. These are the only possible isomorphisms
between the two graphs. As shown in Figure 2, this is exactly what our al-
gorithm accomplishes. The �gure plots the evolution of each component of
the state vector x(t), a 16-dimensional vector, under the replicator dynamics
(see equation 3.2). Observe how, after rapidly trying to match 1 to A and 2
to B, it converges to a saddle point, which indeed incorporates the informa-
tion regarding the two possible isomorphisms. After a slight perturbation,
at around the seventy-�fth step, the process makes a choice and quickly
converges to one of the two correct solutions.

3.3 Experimental Results. In order to assess the effectiveness of the pro-
posed approach, extensive simulations were performedover randomly gen-
erated graphs of various connectivities. Random graphs represent a useful
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1
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Figure 1: A pair of isomorphic graphs.

benchmark not only because they are not constrained to any particular ap-
plication, but also because it is simple to replicate experiments and hence
to make comparisons with other algorithms. Before going into the details
of the experiments, however, we need to enter a preliminary caveat.

It is often said that random graph isomorphism is trivial. Essentially, this
claim is based on a result due to Babai, Erdös, and Selkow (1980), which
shows that a straightforward, linear-time graph isomorphism algorithm
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Figure 2: Evolution of the components of the state vector x(t) for the graphs in
Figure 1, using the replicator dynamics (see equation 3.2).
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does work for almost all random graphs.5 It should be pointed out, how-
ever, that there are various probability models for random graphs (Palmer,
1985). The one adopted by Babai et al. (1980) considers random graphs as
uniformly distributed random variables; they assume that the probability
of generating any n-vertex graph equals 2¡(n

2). By contrast, the customary
way in which random graphs are generated leads to a distribution that is
uniform only in a special case. Speci�cally, given a parameter p (0 < p < 1)
that represents the expected connectivity, a graph of order n is generated
by randomly entering edges between the vertices with probability p. Note
that p is related to the expected size of the resulting graph, which indeed
is

¡n
2

¢
p. It is straightforward to see that in so doing, the probability that a

graph of order n and size s be generated is given by ps(1 ¡ p)(
n
2)¡s, which

only in the case p D 1
2 equals Babai’s uniform distribution. The results pre-

sented by Babai et al. (1980) are based on the observation that by using a
uniform probability model, the degrees of the vertices have large variability,
and this is in fact the key to their algorithm. In the nonuniform probability
model, the degree random variable has variance (n ¡ 1)p(1 ¡ p), and it is
no accident that it attains its largest value exactly at p D 1

2 . However, as p
moves away from 1

2 , the variance becomes smaller and smaller, tending to
0 as p approaches 0 or 1. As a result, Babai et al.’s arguments are no longer
applicable. It therefore seems that, using the customary graph generation
model, random graph isomorphism is not as trivial as is generally believed,
especially for very sparse and very dense graphs. In fact, the experience
reported by Rangarajan et al. (1996), Rangarajan and Mjolsness (1996) and
Simi Âc (1991), and also the results presented below, provide support to this
claim.

In the experiments reported here, the algorithm was started from the
barycenter of the simplex and stopped when either a maximal clique (a
local maximizer of Of on Sn) was found or the distance between two suc-
cessive points was smaller than a �xed threshold, which was set to 10¡17.
In the latter case the converged vector was randomly perturbed and the
algorithm restarted from the perturbed point. Because of the one-to-one
correspondence between local maximizers and maximal cliques, this situa-
tion corresponds to convergence to a saddle point. All the experiments were
run on a Sparc20.

Undirected 100-vertex random graphs were generated with expected
connectivities ranging from 1% to 99%. Speci�cally, the values of the edge-
probability p were as follows: 0.01, 0.03, 0.05, 0.95, 0.97, 0.99, and from 0.1 to
0.9 in steps of 0.1. For each connectivity value, 100 graphs were produced,
and each had its vertices randomly permuted so as to obtain a pair of iso-
morphic graphs. Overall, 1500 pairs of isomorphic graphs were generated.

5 A property is said to hold for almost all graphs, if the probability that the property
holds tends to 1 as the order of the graph approaches in�nity.
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To keep the order of the association graph as low as possible, its vertex
set was constructed as follows:

V D
©
(i, h) 2 V0 £ V00: deg(i) D deg(h)

ª
,

the edge set E being de�ned as in de�nition 1. It is straightforward to see
that when the graphs are isomorphic, theorem 1 continues to hold, since
isomorphisms preserve the degree property of the vertices. This simple
heuristic may signi�cantly reduce the dimensionality of the search space.

Each pair of isomorphic graphs was given as input to the replicator
model; after convergence, a success was recorded when the cardinality of
the returned clique was equal to the order of the graphs given as input (that
is, 100).6 Because of the stopping criterion employed, this guarantees that
a maximum clique, and therefore a correct isomorphism, was found. Fig-
ure 3a plots the proportion of successes as a function of p, and Figure 3b
shows the average CPU time (in logarithmic scale) taken by the algorithm
to converge.

These results are signi�cantly superior to those Simi Âc (1991) reported:
poor results at connectivities less than 40% even on smaller graphs (up to
75 vertices). They also compare favorably with the results obtained more
recently by Rangarajan et al. (1996) on 100-vertex random graphs for con-
nectivities up to 50%. Speci�cally, at 1% and 3% connectivities, they report
a percentage of correct isomorphisms of about 0% and 30%, respectively.
Using our approach, we obtained, on the same kind of graphs, a percentage
of success of 10% and 56%, respectively. Rangarajan and Mjolsness (1996)
also ran experiments on 100-vertex random graphs with various connec-
tivities, using a powerful Lagrangian relaxation network. Except for a few
instances, they always obtained a correct solution. The computational time
required by their model, however, turns out to exceed ours greatly. As an ex-
ample, the average time their algorithm took to match two 100-vertex 50%-
connectivity graphs was about 30 minutes on an SGI workstation. As shown
in Figure 3b, we obtained identical results in about 3 seconds. However, for
very sparse and very dense graphs, our algorithm becomes extremely slow.
In the next section, we present an exponential version of our replicator dy-
namics, which turns out to be dramatically faster and even more accurate
than the classical model, 3.2.

All of the algorithms mentioned above do incorporate sophisticated an-
nealing mechanisms to escape from poor local minima. By contrast, in the
presented work, no attempt was made to prevent the algorithm from con-
verging to such solutions. It seems that as far as the graph isomorphism
problem is concerned, global maximizers of the Motzkin-Straus objective

6 Due to the high computational time required, in the p D 0.01 and p D 0.99 cases, the
algorithm was tested on only 10 pairs instead of 100.
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Figure 3: Results obtained over 100-vertex graphs of various connectivities, us-
ing dynamics 3.2. (a) Percentage of correct isomorphisms. (b) Average computa-
tional time taken by the replicator equations. The vertical axis is in logarithmic
scale, and the numbes in parentheses represent the standard deviation.

have large basins of attraction. A similar observation was also made in
connection to earlier experiments concerning the maximum clique problem
(Bomze et al., 1997; Pelillo, 1995).



Replicator Equations, Maximal Cliques, and Graph Isomorphism 1949

4 Faster Replicator Dynamics

Recently there has been much interest in evolutionary game theory around
the following exponential version of replicator equations, which arises as
a model of evolution guided by imitation (Hofbauer, 1995; Hofbauer &
Weibull, 1996; Weibull, 1994, 1995):

Pxi (t) D xi(t)

³
ekp i(t)

Pn
jD1 xj(t)ekpj (t)

¡ 1

!
, i D 1, . . . , n, (4.1)

where k is a positive constant. As k tends to 0, the orbits of this dynamics
approach those of the standard, “�rst-order” replicator model, 3.1, slowed
by the factor k; moreover, for large values ofk , the model approximates the
so-called best-reply dynamics (Hofbauer & Weibull, 1996). It is readily seen
that dynamics 4.1 is payoff monotonic (Weibull, 1995), which means that

Pxi (t)
xi (t)

>
Pxj(t)

xj(t)
, p i (t) > pj(t) (4.2)

for i, j D 1, . . . , n. This amounts to stating that during the evolution process,
the components corresponding to higher payoffs will increase at a higher
rate. Observe that the �rst-order replicator model, 3.1, also is payoff mono-
tonic. The class of payoff monotonic dynamics possesses several interesting
properties (Weibull, 1995). In particular, all have the same set of stationary
points, which are characterized by equation 3.3. Moreover, when the �tness
matrix W is symmetric, the average population payoff de�ned in equa-
tion 3.4 is also strictly increasing, as in the �rst-order case (see Hofbauer,
1995, forproof).After discussing various propertiesof payoff monotonic dy-
namics, Hofbauer (1995) has recently concluded that they behave essentially
in the same way as the standard replicator equations, the only difference
being the size of the basins of attraction around stable equilibria.

A customary way of discretizing equation 4.1 is given by the following
difference equations (Cabrales & Sobel, 1992; Gaunersdorfer & Hofbauer,
1995), which is also similar to the “self-annealing” dynamics recently intro-
duced by Rangarajan (1997):

xi (t C 1) D
xi (t)ekp i(t)

Pn
jD1 xj(t)ekpj (t)

, i D 1, . . . , n. (4.3)

As its continuous counterpart, this dynamics is payoff monotonic, that is,

xi (t C 1) ¡ xi(t)
xi(t)

>
xj(t C 1) ¡ xj (t)

xj(t)
, p i(t) > p j(t) , (4.4)
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for all i, j D 1, . . . , n. Observe that the standard discrete-time equations, 3.2,
also possess this property.

From our computational perspective, exponential replicator dynamics
are particularly attractive because, as demonstrated by the extensive nu-
merical results reported below, they seem to be considerably faster and
even more accurate than the standard, �rst-order model. To illustrate, in
Figure 4 the behavior of the dynamics 4.3 in matching the simple graphs of
Figure 1 is shown for various choices of the parameter k . Notice how the
qualitative behavior of the algorithm is the same as the �rst-order model,
but now convergence is dramatically faster (cf. Figure 2). In this example,
the process becomes unstable when k D 5, suggesting, as expected, that the
choice of this parameter is a trade-off between speed and stability. Unfor-
tunately, there is no theoretical principle to choose this parameter properly.

To test the validity of this new model on a larger scale, we conducted a
second series of experimentsover the same 1500 graphs generated for testing
the �rst-order dynamics. The discrete-time equations, 4.3, were used, and
the parameter k was heuristically set to 10. The process was started from
the barycenter of the simplex and stopped using the same criterion used in
the previous set of experiments. Figure 5 shows the percentage of successes
obtained for the various connectivity values and the average CPU time
taken by the algorithm to converge (in logarithmic scale). It is evident from
these results that the exponential replicator system, 4.3, may be dramatically
faster than the �rst-order model, 3.2, and may also provide better results.

5 Conclusion

In this article, we have developed a new energy-minimization framework
for the graph isomorphism problem that is centered around an equivalent
maximum clique formulation and the Motzkin-Straus theorem, a remark-
able result that establishes an elegant connection between the maximum
clique problem and a certain standard quadratic program.The attractive fea-
ture of the proposed formulation is that a clear one-to-one correspondence
exists between the solutions of the quadratic program and those in the origi-
nal, discrete problem.Wehave then introduced the so-called replicatorequa-
tions, a class of continuous- and discrete-time dynamical systems developed
in evolutionary game theory and various other branches of theoretical biol-
ogy and have shown how they naturally lend themselves to approximately
solving the Motzkin-Straus program. The extensive experimental results
presented show that despite their simplicity and their inherent inability to
escape from local optima, replicator dynamics are nevertheless able to pro-
vide solutions that are competitive with more sophisticated deterministic
annealing algorithms in terms of both quality of solutions and speed.

Our framework is moregeneral than presented here, and we are now em-
ploying it for solving more general subgraph isomorphism and relational
structure matching problems. Preliminary experiments seem to indicate that
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Figure 4: Evolution of the components of the state vector x(t) for the graphs
in Figure 1, using the exponential replicator model, equation 4.3, for different
values of the parameter k .
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Figure 5: Results obtained over 100-vertex graphs of various connectivities,
using the exponential dynamics 4.3. (a) Percentage of correct isomorphisms.
(b) Average computational time taken by the replicator equations. The verti-
cal axis is in logarithmic scale, and the numbers in parentheses represent the
standard deviation.

local optima might represent a problem here, especially in matching very
sparse or dense graphs. Escape procedures like those developed in Bomze
(1997) and Bomze et al. (1999) would be helpful in these cases to avoid
them. Nevertheless, local solutions in the continuous domain always have
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a meaningful interpretation in terms of maximal commonsubgraph isomor-
phisms, and this is one of the major advantages of the presented approach.
We are currently conducting a thorough investigation and plan to present
the results in a forthcoming article. The approach is also being applied with
success to the problem of matching hierarchical structures, with application
to shape matching problems arising in computer vision (Pelillo, Siddiqi, &
Zucker, 1999).
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